The Bayesian Ontology Language BEL

نویسندگان

  • İsmail İlkan Ceylan
  • Rafael Peñaloza
چکیده

We introduce the new probabilistic description logic (DL) BEL, which extends the light-weight DL EL with the possibility of expressing uncertainty about the validity of some knowledge. Contrary to other probabilistic DLs, BEL is designed to represent classical knowledge that depends on an uncertain context; that is, some of the knowledge may hold or not depending on the current situation. The probability distribution of these contexts is expressed by a Bayesian network (BN). We study different reasoning problems in BEL, providing tight complexity bounds for all of them. One particularly interesting property of our framework is that reasoning can be decoupled between the logical (i.e., EL), and the probabilistic (i.e., the BN) components. We later generalize all the notions presented to introduce Bayesian extensions of arbitrary ontology languages. Using the decoupling property, we are able to provide tight complexity bounds for reasoning in the Bayesian extensions of many other DLs. We provide a detailed analysis of our formalism w.r.t. the assumptions made and compare it with the existing approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bayesian Ontology Reasoner is BORN!

Bayesian ontology languages are a family of probabilistic ontology languages that allow to encode probabilistic information over the axioms of an ontology with the help of a Bayesian network. The Bayesian ontology language BEL is an extension of the lightweight Description Logic (DL) EL within the above-mentioned framework. We present the system BORN that implements the probabilistic subsumptio...

متن کامل

Probabilistic Query Answering in the Bayesian Description Logic BEL

BEL is a probabilistic description logic (DL) that extends the light-weight DL EL with a joint probability distribution over the axioms, expressed with the help of a Bayesian network (BN). In recent work it has been shown that the complexity of standard logical reasoning in BEL is the same as performing probabilistic inferences over the BN. In this paper we consider conjunctive query answering ...

متن کامل

Track 4 Overview: Extraction of Causal Network Information in Biological Expression Language (BEL)

Automatic extraction of biological network information is one of the most desired and most complex tasks in biological text mining. The BioCreative track 4 provides training data and an evaluation environment for the extraction of causal relationships in Biological Expression Language (BEL). BEL is a modeling language that is easily editable by humans or by automatic systems and can express cau...

متن کامل

Training and evaluation corpora for the extraction of causal relationships encoded in biological expression language (BEL)

Success in extracting biological relationships is mainly dependent on the complexity of the task as well as the availability of high-quality training data. Here, we describe the new corpora in the systems biology modeling language BEL for training and testing biological relationship extraction systems that we prepared for the BioCreative V BEL track. BEL was designed to capture relationships no...

متن کامل

Tight Complexity Bounds for Reasoning in the Description Logic BEL

Recently, Bayesian extensions of Description Logics, and in particular the logic BEL, were introduced as a means of representing certain knowledge that depends on an uncertain context. In this paper we introduce a novel structure, called proof structure, that encodes the contextual information required to deduce subsumption relations from a BEL knowledge base. Using this structure, we show that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016